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SUMMARY

For the very large nonlinear dynamical systems that arise in a wide range of physical, biological
and environmental problems, the data needed to initialize a numerical forecasting model are seldom
available. To generate accurate estimates of the expected states of the system, both current and future,
the technique of ‘data assimilation’ is used to combine the numerical model predictions with observations
of the system measured over time. Assimilation of data is an inverse problem that for very large-scale
systems is generally ill-posed. In four-dimensional variational assimilation schemes, the dynamical model
equations provide constraints that act to spread information into data sparse regions, enabling the state
of the system to be reconstructed accurately. The mechanism for this is not well understood. Singular
value decomposition techniques are applied here to the observability matrix of the system in order to
analyse the critical features in this process. Simpli�ed models are used to demonstrate how information
is propagated from observed regions into unobserved areas. The impact of the size of the observational
noise and the temporal position of the observations is examined. The best signal-to-noise ratio needed
to extract the most information from the observations is estimated using Tikhonov regularization theory.
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1. INTRODUCTION

Accurate prediction of the behaviour of very large evolutionary systems requires both accurate
numerical models for simulating the system dynamics and accurate data for initializing the
forecast. In practice, precise data describing the current state of a system are not available,
and uncertainties in the initial data lead to signi�cant errors between the predicted states
and the actual states of the system. To generate improved estimates of the expected states,
both current and future, the technique of ‘data assimilation’ is used to combine numerical
model predictions with observations of the system measured over time. The data assimilation
problem can be expressed as: Given a discrete model of the dynamics of a system, a (noisy)
estimate of the current state and (noisy) observations of the system over time, �nd accurate
estimates of the system states.
Variational data assimilation techniques are attractive because they deliver the best statisti-

cally linear unbiased estimate of the system states given the available observations and their
error covariances [1, 2]. The problem is formulated as an optimization problem where the
objective function measures the mismatch between the model predictions and the observed
system states, weighted by the inverse of the error covariance matrices. In four-dimensional
schemes, the objective function is minimized over a time interval, and the model equations
are treated as strong constraints [3]. These variational assimilation schemes are applicable to a
wide range of physical modelling problems, including oil recovery, coastal �ow and sediment
transport, �ood prediction, and tra�c �ow problems. With the proliferation of observational
data from expensive satellites and other instruments, techniques of data assimilation are needed
increasingly to extract the best value from the information provided.
For the very large systems that arise in meteorology and oceanography, the data assimilation

problem is an ill-posed inverse problem. The available observations are not generally su�cient
to determine all of the degrees of freedom in the problem, and often there are data sparse areas
where good state estimates are needed. In four-dimensional variational assimilation schemes
(4DVar), the dynamical model equations act to spread information into unobserved regions [4],
but the mechanism for this is not well understood. Here we apply singular value decomposition
(SVD) techniques to the observability matrix of the system in order to analyse the critical
features in this process. Idealized model studies are used to demonstrate how information is
propagated from observed regions into unobserved regions.
Using identical twin experiments with a two-dimensional Eady model [5], we show that

by observing only the lower level temperature at two points in time, 4DVar can reconstruct
the upper level temperature wave needed for the growth or decay of a baroclinic wave.
Applying the SVD, the optimal state estimate is written as a linear combination of the right
singular vectors (RSVs) of the observability matrix. This matrix is a function of the linearized
observation and forecast model operators. (We note that the singular vectors of this matrix
are not the same as the singular vectors of the tangent linear model that are commonly used
in meteorology.) The properties of the SVD of the observability matrix are then used to
understand how information is propagated from observed regions to unobserved regions by
the dynamical model. The impact of varying the relative weight given to the background
(predicted) states, the noise on the observations and the position of the observations in the
assimilation time interval is examined. By writing the problem in the form of a Tikhonov
regularization problem, it is shown that the best signal-to-noise ratio needed to extract the
most information from the observations can be determined.
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In the next section we present the variational data assimilation method. In Section 3 we
describe the test model and show experimental results obtained by variational assimilation. In
Section 4 the information content of the observations is analysed and the critical features of
the mechanism for reconstructing the states of the system are examined. In Sections 5 and 6,
the application of Tikhonov regularization to the problem is described and conclusions are
drawn.

2. FOUR-DIMENSIONAL VARIATIONAL DATA ASSIMILATION

Variational data assimilation schemes are described here for a system modelled by the discrete
nonlinear equations

xk+1 = fk(xk); k=0; : : : ; N − 1 (1)

where xk ∈Rn is the model state vector and fk : Rn →Rn is a nonlinear function describing
the evolution of the states from time tk to time tk+1.
The observations are related to the system state by the equations

yk = hk(xk) + Tk ; k=0; : : : ; N − 1 (2)

where yk ∈Rpk is a vector of pk observations at time tk and hk : Rn →Rpk is a nonlinear func-
tion that includes transformations and grid interpolations. The observational errors Tk ∈ Rpk

are assumed to be unbiased, serially uncorrelated, Gaussian random vectors with covariance
matrices Rk ∈ Rpk×pk .
A prior estimate, or ‘background estimate’, xb

0, of the initial state x0 is assumed to be
known and the initial random errors (x0 − xb

0) are assumed to be Gaussian with covariance
matrix B0 ∈ Rn×n. The observational errors and the errors in the prior estimates are assumed
to be uncorrelated.
The aim of the data assimilation is to �nd the maximum likelihood Bayesian estimate of the

system states given the observations and the prior estimate of the initial state. This problem
reduces to minimizing the square error between the model predictions and the observed system
states, weighted by the inverse of the covariance matrices, over the assimilation interval [1].
The model is assumed to be ‘perfect’ and the system equations are treated as strong constraints
on the objective function. The model states that satisfy the system equations are uniquely
determined on the assimilation interval by the initial states of the system. The initial states
can thus be treated as the required control variables in the optimization. The data assimilation
problem is de�ned explicitly as follows.

Problem 1
Minimize, with respect to x0, the objective function

J= 1
2(x0 − xb

0)
TB−1

0 (x0 − xb
0) +

1
2

N−1∑
j=0
(hj(xj)− yj)TR−1

j (hj(xj)− yj) (3)

subject to the system equations (1).

In practice the constrained minimization problem is solved iteratively by a gradient method.
The problem is �rst reduced to an unconstrained problem using the method of Lagrange.
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Necessary conditions for the solution to the unconstrained problem then require that a set of
adjoint equations together with the system equations must be satis�ed. The adjoint equations
are given by

[N =0 (4)

[k =FTk (xk)[k+1 − HT
k R

−1
k (hk(xk)− yk); k=N − 1; : : : ; 0 (5)

where [k ∈Rn; k=0; : : : ; N , are the adjoint variables and Fk ∈ Rn×n and Hk ∈Rn×pk are the
Jacobians of fk and hk with respect to xk .
The gradient of the objective function (3) with respect to the initial data x0 is then given by

∇x0J=B−1
0 (x0 − xb

0)− [0 (6)

At the optimal, the gradient (6) is required to be equal to zero. Otherwise, this gradient
provides the local descent direction needed in the iteration procedure to �nd an improved
estimate for the optimal initial states. Each step of the gradient iteration process requires one
forward solution of the model equations, starting from the current best estimate of the initial
states, and one backward solution of the adjoint equations. The estimated initial conditions
are then updated using the computed gradient direction. This process is expensive, but it is
operationally feasible, even for very large systems, such as weather and ocean systems, which
may involve as many as 107 state variables.

3. APPLICATION TO THE EADY MODEL

The success of the 4DVar assimilation technique is largely due to the action of the dynam-
ical model equations, which spread information from the available observations into sparse
data regions, enabling the states to be reconstructed accurately everywhere in the domain.
To investigate the critical features of the reconstruction process, we conduct identical twin
experiments using a simple two-dimensional Eady model of baroclinic instability. The model
describes the evolution of perturbations to a basic state, given by a linear zonal wind shear
with height in a domain between two rigid horizontal boundaries. The density, static sta-
bility and Coriolis parameter are taken to be constants, and it is assumed that the interior
quasi-geostrophic potential vorticity is zero.
Perturbations to the basic state are advected zonally by the basic shear �ow. The system

dynamics are described by the non-dimensional equations(
@
@t
+ z

@
@x

)
b=

@ 
@x

; for z= ± 1
2
; x∈ [0; X ] (7)

where b is the buoyancy and the geostrophic streamfunction  satis�es

@2 
@x2

+
@2 
@z2

= 0; z ∈
[
−1
2
;
1
2

]
; x∈ [0; X ] (8)

with boundary conditions

@ 
@z
= b; for z= ± 1

2
; x∈ [0; X ] (9)

The buoyancy and streamfunction are assumed to be periodic in x on [0; X ].
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3.1. Experiments

The aim of the experiments is to reconstruct the buoyancy wave on the upper boundary of the
region from observations of the buoyancy on the lower boundary at the beginning and end of
the assimilation interval using 4DVar. The model equations are obtained by discretizing the
system equations (7)–(9) using a leap-frog advection scheme with 11 vertical levels and 40
grid points in the horizontal. The state space, of dimension n=80, is given by the buoyancy
on the upper and lower boundaries.
Perfect observations representing the ‘truth’ are generated by model runs over a time inter-

val corresponding to 6 h, initiated with the most rapidly growing (or decaying) normal mode
of the system. The initial �elds have a tilt with height that is associated with vertical coupling
between the upper and lower waves, leading to exponential growth (or decay) of the solution.
Uncorrelated random noise with variance �20 = 1 is added to the observations. The prior esti-
mate of the state at time t0, known as the initial background state, is equal to the true state
with a phase shift. This represents a displacement in the estimate of the current system state.
The resulting background errors are assumed to be random and uncorrelated with variance �2b.
In the objective function (3) of the 4DVar scheme, the covariance matrices are thus de�ned to
be B−1

0 =�−2
b In and R−1

j =�−2
0 Ip; j=0; 1. The error variance ratio is de�ned to be �2 =�20=�

2
b.

The optimal state, also known as the analysis, is computed by a quasi-Newton minimization
algorithm, where the gradient of the objective function is found from the adjoint of the Eady
model.
In practice, the error characteristics of the observations are generally known quite well from

the instrumentation data. Much less con�dence can be placed in the error statistics assumed
for the initial background state. We investigate here the e�ects on the analysis produced in
4DVar assimilation by changes in the variance ratio and in the positions of the observations
in time.

3.2. Results

In Figure 1, the background and analysis of the buoyancy are shown in the case where the
observations are exact. The variance ratio is selected to be �2 = 0:01 (Figure 1(a) and (b)) and
�2 = 0:1 (Figure 1(c) and (d)). The lower boundary wave, where the solution is measured,
is estimated accurately in both cases. The upper boundary is also reconstructed accurately
in the �rst case, but where a larger weight is placed on the background, the amplitude and
phase of the upper wave are estimated less accurately, and the growth rate is no longer deter-
mined well. We see that weighting the background too heavily causes useful information to
be lost.
In Figure 2, the e�ects of noise in the observations on the analysis are shown in the cases

where �2 = 0:08 and �2 = 0:01. In the �rst case the weights are statistically correct and
the lower wave is reconstructed accurately, but the reconstructed upper wave contains phase
and amplitude errors, again due to the weighting on the background term. If less weighting
is applied to the background now, however, the noise on the observations leads to small
oscillations in the reconstructed lower wave, and causes a non-physical wave to be generated
by the assimilation on the upper boundary. We see that with less weighting on the background,
the results become sensitive to the noise in the observations.
The e�ects of positioning the observations at di�erent times in the assimilation interval are

shown in Figure 3. The observations are assimilated over an interval of length t f , correspond-
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Figure 1. 4DVar analyses (solid line) shown at the �nal time of a 6 h assimilation interval in the cases
(a) and (b) �2 = 0:01 and (c) and (d) �2 = 0:1. The truth and the background state are shown by the
dotted and the dashed lines, respectively. In both cases perfect observations, shown by the circles, are

given at the beginning and end of the interval.
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Figure 2. 4DVar analyses (solid line) shown at the �nal time of a 6 h assimilation interval
in the cases (a) and (b) �2 = 0:08 and (c) and (d) �2 = 0:01. The truth and the background
are shown by the dotted line and the dashed line, respectively. In both cases, observations,
shown by the circles, are given at the beginning and end of the interval and contain random

noise with a Gaussian distribution and standard deviation �0 = 1.
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Figure 3. Euclidean norm of the streamfunction for 4DVar analyses and forecasts on a 12h assimilation
interval in the case of the most rapidly (a) growing and (b) decaying normal modes. Observations are
given at t= t f , the end of the assimilation interval, and at either t=0 (dotted) or at t=(3=4)t f (dashed).
The noise on the observations has standard deviation �0 = 1:0 and the variance ratio is speci�ed as

�2 = 0:04. The ‘truth’ (solid) is also shown.

ing to 12 h, and a forecast over a time interval corresponding to 24 h is produced from the
analysis at time t f , the end of the assimilation interval. Observations at the end time t= t f
are used, together with observations at either the initial time t=0, or at the time t=(3=4)t f .
The norm of the streamfunction is plotted for the case where the model is initiated by a
growing mode (Figure 3(a)) and by a decaying mode (Figure 3(b)). It can be seen that the
results of the assimilation are more accurate in both cases for observations more widely sepa-
rated in time. Moreover, when the observations are close together in time, the decaying mode
is very badly reconstructed, and in the forecast the analysis is actually growing rather than
decaying.

3.3. Summary

The conclusions of the Eady model experiments are summarized as follows:

(i) Weighting the background state too heavily may �lter information needed to reconstruct
the state in unobserved regions.

(ii) In unobserved regions, the analysis may be sensitive to noise in the observations if the
background is not weighted heavily enough.

(iii) Selecting the appropriate value for �2 =�20=�
2
b is critical for extracting the maximum

amount of useful information from the observations.
(iv) A better analysis is achieved if the observations are placed as far apart as possible in

the assimilation time interval.

Next we analyse the mechanism producing these e�ects, using a singular vector approach.
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4. INFORMATION CONTENT OF OBSERVATIONS IN 4D-VAR

To analyse the critical features in the 4DVar assimilation process, we use a SVD technique
applied to the observability matrix of the system. The model and observation operators are
assumed to be linear and the prior (background) error and observational errors are assumed
to be uncorrelated with �xed variance. We write

xk+1 =M (tk+1; tk)xk (10)

yk =Hkxk + Tk (11)

for k=0; : : : ; N − 1. The objective function (3) is written as

J= 1
2(x0 − xb

0)
TB−1

0 (x0 − xb
0) +

1
2(Ĥx0 − ŷ)TR̂−1

(Ĥx0 − ŷ) (12)

where

Ĥ= [HT
0 ; (H1M (t1; t0))

T; : : : ; (HN−1M (tN−1; t0))T]T (13)

ŷT = [yT0 ; y
T
1 ; : : : ; y

T
N−1] (14)

and R̂ is a block diagonal matrix with diagonal blocks equal to Rj. The matrix Ĥ is known
as the observability matrix [6, 7]. The solution to the optimization problem is then given
explicitly by

x0 =xb
0 + (B

−1
0 + ĤTR̂

−1
Ĥ)−1ĤTR̂

−1
d̂; d̂=(ŷ − Ĥxb

0) (15)

4.1. Singular value decomposition

We assume now that B0 =�2bI and R̂=�20I and de�ne the SVD of the observability matrix
Ĥ to be

Ĥ=U�VT (16)

where �=diag{�j}. The scalars �j are the singular values of Ĥ, and the left and right singular
vectors vj and uj are given by the columns of V and U, respectively. Applying the SVD in
(15) enables us to write the optimal analysis as

x0 =xb
0 +

∑
j

�2j
�2 + �2j

uTj d̂
�j
vj (17)

The increments made to the prior estimate xb
0 by the assimilation process are thus given by

a linear combination of the RSVs of Ĥ, weighted by the two factors

fj=
�2j

�2 + �2j
; cj=

uTj d̂
�j

(18)
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The RSVs de�ne the structures that can form the analysis increments and the weights cj and
fj determine the contribution of these structures to the analysis for a given set of observations.
We note that the singular values and singular vectors are independent of the observed data
and depend only on the observation and dynamical model operators.
If there is no background (prior) estimate constraining the solution, so that �2 = 0, then the

‘�lter factor’ fj=1; ∀j, and the weight cj given to each singular vector in the increment is
proportional to the angle between the ‘innovation’ vector d̂ and the corresponding left singular
vector uj. Large cj indicates that for a particular set of observations the corresponding singular
vector contributes signi�cantly to the analysis. Typically, for perfect observations, the values
of cj decay with �j, but for noisy data these values can become very large for small singular
values.
If a background (prior) estimate is given, so that �2¿0, then the weighting on each singular

vector is reduced by the corresponding �lter factor fj. In the case where �2��2j , the contri-
bution to the analysis from the corresponding singular vector is damped and the observational
information is strongly �ltered. This �ltering is a vital aspect of the assimilation process, as
both background and observations contain errors. The speci�ed value of the variance ratio �2

is therefore crucial for the assimilation to extract the maximum information available in the
observations.

4.2. Interpretation of experimental results

We now apply the SVD theory to interpret the experimental results of Section 3. In Figure 4(a)
we show the coe�cients cj for the SVD of the Eady model on an assimilation interval
corresponding to 6h. Due to the zonal symmetry of the Eady model, the singular vectors form
pairs with the same singular value and the same spatial structure apart from a phase shift in

010 620 1230
0

40 50

0.1

60 70

0.2

0

20

0.3
40

60 0.4

0.5

Singular Vector Index, j

| u
T j

j d
 | 

λλ

Time of initial obs

Singular value of the second
pair of singular vectors

Perfect
Noisy (σ=1)

(a) (b)

Figure 4. (a) The values of the coe�cients cj (as de�ned in (18)) for perfect (dashed line) and noisy
(thin solid line) observations taken at the beginning and end of a 6 h assimilation interval. (b) The
singular value of the second pair of signi�cant singular vectors plotted over a 12 h assimilation interval
as a function of the time when the �rst set of observations are made. In all cases, the �nal observations

are made at the end of the assimilation interval.
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the horizontal direction. There are two pairs of singular vectors that are signi�cant for the
reconstruction of the solution, namely, the RSVs numbered 1=2 and 41=42. The pair of singular
vectors associated with the larger singular value are found to contribute primarily to the
accurate estimation of the lower boundary wave, where the observations are given. The second
pair, associated with the smaller singular value, contributes to the accurate reconstruction of
the upper wave.
For perfect observations, the weights cj pick out precisely those singular vector structures

needed for an accurate reconstruction of the upper wave. For noisy observations, the weighting
coe�cients cj are seen to grow as the singular values decay. If the corresponding singular
vectors are not su�ciently �ltered, then the analysis may be very inaccurate due to the
noise. In this case, however, unless the variance ratio �2 is carefully speci�ed, the important
information contained in the second set of signi�cant singular vectors may be �ltered out,
causing the reconstructed upper wave to lose accuracy, as seen in Figures 1 and 2.
In Figure 4(b) we show the singular value for the second pair of signi�cant singular vectors

as a function of the time when the �rst observations are made within an assimilation interval
corresponding to 12h. In all cases the second (�nal) set of observations is made at the end of
the interval. We see that the farther apart the observations are taken, the larger is the second
signi�cant singular value. Therefore, important information in the observations is less likely
to be lost if the observations are taken as far apart as possible in time, as seen in Figure 3.
The same conclusions apply for an assimilation interval corresponding to 6 h.

4.3. Summary

We may summarize the results of the theoretical analysis as follows:

(i) The RSVs with small singular values contain information needed to reconstruct the state
in unobserved regions.

(ii) The background state is needed to �lter the RSVs that correspond to noise, but may
also �lter signi�cant information needed to reconstruct the states accurately unless the
variance ratio �2 is speci�ed carefully.

(iii) The singular values associated with the singular vectors that contain signi�cant informa-
tion in unobserved regions increase as the observations are moved farther apart in time,
thus increasing the useful information that can be extracted from the observations.

5. TIKHONOV REGULARIZATION

In Section 4 we have demonstrated the importance of the variance ratio �2 in maximizing the
information that can be extracted from the observations by the 4DVar method. In practice,
the variances of the observational errors are reasonably well-known, but accurate estimates
of the background error variances for a given state of the system are not generally available.
We show here how good choices for �2 can be determined directly from the observations by
using Tikhonov regularization theory [8].
We �rst reformulate the objective function (3) for the variational assimilation problem by

making a change of variable. We let CB and CR be such that B0 =�2bCB, R̂=�20CR, and de�ne
�=C−1=2

B (x0 − xb
0). For the linear model (11), minimizing the objective function (3) is then
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Figure 5. The L-curve: a parametric plot of the values of log ‖xa(�)− xb‖2 and log ‖ŷ− Ĥxa(�)‖2 for
di�erent values of �2, which are written beside each point.

equivalent to minimizing the function

J̃(�)=�2‖�‖22 + ‖C−1=2
R d̂ −C−1=2

R ĤC1=2B �‖22 (19)

where �2 =�20=�
2
b. The ratio �2 can now be interpreted as a regularization parameter or signal-

to-noise ratio that determines the relative weight given to the background state in comparison
to the observations and that �xes the level of �ltering applied in the 4DVar analysis.
We see that if �2 = 0, that is, if there is no background constraint speci�ed, the problem

is ill-posed in the general case where there are fewer observations than degrees of freedom
in the initial states. The problem is then an under-determined least-squares problem, which
does not have a unique solution. Even where there are su�cient observational data to de�ne
a unique solution, the problem is likely to be very ill-conditioned and sensitive to noise. To
ensure that the problem is well-posed, an additional condition is added in order to regularize
the problem and to constrain the solution in the (nearly) null space. Generally this additional
constraint requires the least-square (weighted) length of the solution also to be minimized.
The complete problem is then written in the form (19).
For the regularized problem, if �2 is relatively small, the solution is still sensitive to the

noise, whilst if �2 is relatively large, the useful information in the observations is �ltered.
We aim, therefore, to �nd a value for the parameter �2 that maximizes the conditioning
of the problem, and hence minimizes the sensitivity of the solution, whilst minimizing the
loss in accuracy due to adding the extra (background) constraint. With this value of �2, the
4DVar process can be expected to give the best possible analyses for the given data. Several
techniques for determining �2 are given in the literature. These techniques exploit additional
information inherent in the data to �nd the optimal value for the parameter.
A simple (although still expensive) method is the L-curve technique, illustrated in Figure 5.

Here the logs of the two separate least-square objective functions in (19) are plotted against
each other at the minimum of the regularized problem for various values of �2. The point
at which the curve has maximum curvature is known to give the optimal choice for �2
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[9]. For the Eady problem examined here, we see that the optimal value should be in the
region �2 ≈ 0:08− 0:1, which is the range for the best values found experimentally. For more
precise computation, the generalized cross validation (GCV) technique provides an algorithm
for determining the point of maximum curvature [10]. An e�cient implementation of the
algorithm for very large-scale systems can be achieved using a Lanczos process [11].
To obtain improved results for very large-scale practical problems, several parameters could

be introduced into the transformed problem (19). Initial experiments investigating a multi-
parameter approach have already been made [12], but further research is needed.

6. CONCLUSIONS

We describe here the four-dimensional variational data assimilation (4DVar) technique for
combining numerical model predictions with noisy observations in order to generate the opti-
mal estimate of the expected states of a system. This technique is currently used for numerical
weather forecasting in various operational centres. We demonstrate, with a simple model of a
baroclinic instability, that the 4DVar method is able to use a time sequence of observations to
reconstruct the state of the system in unobserved regions. The reconstructed states are shown
to be sensitive to noise, which is �ltered by the constraint on the solution imposed by a
‘prior’, or background, estimate of the initial state. We demonstrate also that for the most
accurate reconstruction of the states, the observations should be taken as far apart as possible
in time, within the assimilation window.
An analysis of the 4DVar assimilation procedure using a singular value decomposition

(SVD) technique is presented, and the results of the experiments are interpreted in terms
of the singular values and singular vectors of the ‘observability’ matrix of the system. We
show that the �ltering e�ect of the background is controlled by a ‘regularization’ parameter,
which may be considered as the variance ratio between the observation and background error
variances. We also establish that a good choice of the regularization parameter can improve
the reconstruction of the states in unobserved regions. Applicable techniques for selecting a
good choice of this parameter based on Tikhonov regularization theory are also described and
demonstrated. More details of this work can be found in References [12, 13].
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